Outline

  • Abstract
  • Highlights
  • Keywords
  • 1. Introduction
  • 2. Direct Matching
  • 2.1. What Is Decoded by Mns?
  • 2.2. Inverse Modeling
  • 2.3. Hebbian-Like Associative Learning
  • 2.4. What Is the Coding Used by Mns?
  • 2.5. Temporal Activity
  • 3. Action Understanding and Direct Matching
  • 3.1. “understanding” Must Affect Behavior; Otherwise It Has No Use for the Organism
  • 4. but Mns Are Active During Execution of the Monkey's Own Actions
  • 5. Simulation Theory and Direct Matching
  • 5.1. Do We Read Too Much into Correlation?
  • 6. Distinguishing Computational and Conceptual Modeling
  • 7. Internal Models and Mirror Neurons
  • 7.1. Mental State Inference Model
  • 8. Development of Mirror Neurons
  • 9. Evolution of the Language-Ready Brain
  • 10. Discussion
  • 10.1. Experiments
  • 10.2. Models
  • 10.3. Evolution
  • Acknowledgement
  • References

رئوس مطالب

  • چکیده
  • کلید واژه ها
  • 1. مقدمه
  • 2. تطبیق مستقیم
  • 1.2. MN ها چه چیز را رمزگشایی می‌کنند؟
  • 2.2. الگوسازی معکوس
  • 3.2. یادگیری شبه تداعی هیب
  • 4.2. چگونه کَدگذاری از سوی MN ها مورد استفاده قرار می‌گیرد؟
  • 5.2. فعالیت زمانی
  • 3. درک فعالیت و تطبیق مستقیم
  • 1.3. "درک" باید بر رفتار اثر بگذارد؛ در غیر این صورت کاربردی برای ارگانیسم ندارد
  • 4. به هر روی، MN ها در خلال اجرای فعالیت‌های خودِ میمون فعال هستند
  • 5. نظریه شبیه‌سازی و تطبیق مستقیم
  • 1.5. آیا به میزان همبستگی پی برده‌ایم؟
  • 6. تشخیص الگوسازی محاسباتی و مفهومی
  • 7. الگوهای داخلی و نورون‌های آینه‌ای
  • 1.7. الگوی استنتاج حالت ذهنی
  • 8. توسعۀ نورون‌های آینه‌ای
  • 9. تکامل مغز آماده - زبان
  • 10. بحث
  • 1.10. آزمایش‌ها
  • 2.10. الگوها
  • 3.10. تکامل
  • سپاسگزاری

Abstract

Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a “mirror neuron system,” putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system.

Keywords: - - - - - -

Discussion

Our discussion so far indicates that the key to understanding the function of MNs and the mechanisms that facilitate that function is governed by our knowledge on the coding of MNs and how evolution changed and augmented MNs.

What do MNs encode (during action execution) and decode (during action observation)? As brain imaging cannot offer much help in this endeavor due to the gross temporal and/or spatial smearing of the neural activity; we hold that most direct information can be obtained via neurophysiology focused on the population level temporal activation of MNs.

دانلود ترجمه تخصصی این مقاله دانلود رایگان فایل pdf انگلیسی