Outline

  • Abstract
  • 1. Introduction
  • 2. Experimental
  • 2.1. Sample Preparation
  • 2.2. Sample Characterization
  • 2.2.1. Crystal Size
  • 2.2.2. Microstructure
  • 2.2.3. Anisotropy
  • 3. Results and Discussion
  • 3.1. Domain Size
  • 3.1.1. X-Ray Diffraction
  • 3.1.2. Raman Spectroscopy
  • 3.2. Anisotropy
  • 3.2.1. Ellipsometry
  • 3.3. Density
  • 3.4. Microstructure
  • 3.4.1. Optical and Scanning Electron Microscopy
  • 3.4.2. Transmission Electron Microscopy (tem)
  • 3.5. Silver Diffusion in Pyc Coatings
  • 4. Conclusion
  • Acknowledges
  • References

رئوس مطالب

  • چکیده
  • 1. مقدمه
  • 2. مراحل تجربی
  • 1.2 آماده‌سازی نمونه‌ها
  • 1.2.2 اندازه‌ بلور
  • 2.2.2 ریزساختار
  • 3.2.2 انیزوتروپی
  • 3. نتایج و بحث
  • 1.1.3 پراش اشعه‌ی X
  • 2.1.3 طیف‌سنجی رامان
  • 2.3 انیزوتروپی
  • 1.2.3 بیضی‌سنجی
  • 3.3 چگالی
  • 4.3 ریزساختار
  • 1.4.3 میکروسکوپ الکترونی نوری و روبشی
  • 2.4.3 میکروسکوپ الکترونی عبوری (TEM)
  • 5.3 نفوذ نقره در پوشش‌های PyC
  • 4. نتایج

Abstract

It is well accepted that TRISO (tristructural isotropic) coated nuclear fuel particles are capable of retaining fission products up to 1600 °C, however above this temperature fission products can diffuse through the pyrolytic carbon (PyC) and silicon carbidecoatings that act as the containment barriers in this fuel. Despite decades of research and development, little is known on the origin of this fuel temperature limit. In order to understand the origin of this fuel temperature PyC coatings produced by fluidized bedchemical vapor deposition were heat treated at 1000 °C, 1400 °C and 1700 °C for 200 h in an innert atmosphere. We have observed that above 1400 °C the anisotropy, domain size and level of graphitization increases to twice its original value. Furthermore, at 1700 °C some samples exhibited the formation of nano-pores, which could be the origin of the maximum fuel temperature limit or at least contribute to it. The increased diffusivity of elements due to microstructural changes was corroborated by silver diffusion experiments. Furthermore, we have observed that not all the samples suffer the same level of graphitization, thus suggesting that some PyC coatings can maintain their capability to retain fission products even after temperature excursions above 1600 °C.


دانلود ترجمه تخصصی این مقاله دانلود رایگان فایل pdf انگلیسی