خوردگی قطعات فولادی در سازههای مجاور آب و نیز خوردگی میلگردهای فولادی در سازههای بتن آرمه ای که در معرض محیطهای خورنده کلروری و کربناتی قرار دارند، یک مساله بسیار اساسی تلقی میشود. در محیطهای دریایی و مرطوب وقتی که یک سازه بتنآرمه معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمکها، اسیدها و کلرورها قرار گیرد، میلگردها به دلیل آسیب دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوسته بیرونی بتن فشار میآورد که به خرد شدن و ریختن آن منتهی میشود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازه بتن آرمهای که به دلیل خوردگی میلگردها آسیب دیده است، میلیونها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر ویژهای جهت جلوگیری از خوردگی اجزاء فولادی و میلگردهای فولادی در بتن اتخاذ گردد که از جمله میتوان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مسئله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک ماده جدید مقاوم در مقابل خوردگی معطوف گردیده است. از آنجا که کامپوزیتهای FRP (Fiber Reinforced Polymers/Plastics) بشدت در مقابل محیطهای قلیایی و نمکی مقاوم هستند که در دو دهه اخیر موضوع تحقیقات گستردهای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بودهاند. چنین جایگزینی بخصوص در محیطهای خورنده نظیر محیطهای دریایی و ساحلی بسیار مناسب به نظر میرسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP صورت گرفته و قابلیت کاربرد آنها به عنوان جانشین کامل فولاد در سازههای مجاور آب و بخصوص در سازه بتن آرمه، به جهت حصول یک سازه کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.
کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
چکیده
کلیات
مقدمه
بسیاری از سازههای بتن آرمه موجود در دنیا در اثر تماس با سولفاتها، کلریدها و سایر عوامل خورنده، دچار آسیبهای اساسی شدهاند. این مساله هزینههای زیادی را برای تعمیر، بازسازی و یا تعویض سازههای آسیب دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یک مساله مهندسی، بلکه به عنوان یک مساله اجتماعی جدی تلقی شده است ]1[. تعمیر و جایگزینی سازههای بتنی آسیبدیده میلیونها دلار خسارت در دنیا به دنبال داشته است. در آمریکا، بیش از 40 درصد پلها در شاهراه ها نیاز به تعویض و یا بازسازی دارند ]2[. هزینه بازسازی و یا تعمیر سازههای پارکینگ در کانادا، 4 تا 6 میلیارد دلار کانادا تخمین زده شده است ]3[. هزینه تعمیر پلهای شاهراه ها در امریکا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیکه برای بازسازی کلیه سازههای بتن آرمه آسیبدیده در امریکا در اثر مساله خوردگی میلگردها، پیشبینی شده که به بودجه نجومی 1 تا 3 تریلیون دلار نیاز است ]3[ !
از مواردی که سازههای بتن آرمه به صورت سنتی مورد استفاده قرار میگرفته، کاربرد آن در مجاورت آب و نیز در محیطهای دریایی بوده است. تاریخچه کاربرد بتن آرمه و بتن پیشتنیده در کارهای دریایی به سال 1896 بر میگردد ]4[. دلیل عمده این مساله، خواص ذاتی بتن و منجمله مقاومت خوب و سهولت در قابلیت کاربرد آن چه در بتنریزی در جا و چه در بتن پیشتنیده بوده است. با این وجود شرایط آب و هوایی و محیطی خشن و خورنده اطراف سازههای ساحلی و دریایی همواره به عنوان یک تهدید جدی برای اعضاء بتن آرمه محسوب گردیده است. در محیطهای ساحلی و دریایی، خاک، آب زیرزمینی و هوا، اکثراً حاوی مقادیر زیادی از نمکها شامل ترکیبات سولفور و کلراید هستند.
در یک محیط دریایی نظیر خلیج فارس، شرایط جغرافیایی و آب و هوایی نامناسب، که بسیاری از عوامل خورنده را به دنبال دارد، با درجه حرارتهای بالا و نیز رطوبتهای بالا همراه شده که نتیجتاً خوردگی در فولادهای به کار رفته در بتن آرمه کاملاً تشدید میشود. در مناطق ساحلی خلیج فارس، در تابستان درجه حرارت از 20 تا 50 درجه سانتیگراد تغییر میکند، در حالیکه گاه اختلاف دمای شب و روز، بیش از 30 درجه سانتیگراد متغیر است. این در حالی است که رطوبت نسبی اغلب بالای 60 درصد بوده و بعضاً نزدیک به 100 درصد است. به علاوه هوای مجاور تمرکز بالایی از دیاکسید گوگرد و ذرات نمک دارد [5]. به همین جهت است که از منطقه دریایی خلیج فارس به عنوان یکی از مخربترین محیطها برای بتن در دنیا یاد شده است [6]. در چنین شرایط، ترکها و ریزترکهای متعددی در اثر انقباض و نیز تغییرات حرارتی و رطوبتی ایجاد شده، که این مساله به نوبه خود، نفوذ کلریدها و سولفاتهای مهاجم را به داخل بتن تشدید کرده، و شرایط مستعدی برای خوردگی فولاد فراهم میآورد [7-9]. به همین جهت بسیاری از سازههای بتن مسلح در نواحی ساحلی ایران نظیر سواحل بندرعباس، در کمتر از 5 سال از نظر سازهای غیر قابل استفاده گردیدهاند.
نظیر این مساله برای بسیاری از سازههای در مجاورت آب، که در محیط دریایی و ساحلی قرار ندارند نیز وجود دارد. پایههای پل، آبگیرها، سدها و کانالهای بتن آرمه نیز از این مورد مستثنی نبوده و اغلب به دلیل وجود یون سولفات و کلرید، از خوردگی فولاد رنج میبرند.
راه حل مساله
تکنیکهایی چند، جهت جلوگیری از خوردگی قطعات فولادی الحاقی به سازه و نیز فولاد در بتن مسلح توسعه داده شده و مورد استفاده قرار گرفته است که از بین آنها میتوان به پوشش اپوکسی بر قطعات فولادی و میلگردها، تزریق پلیمر به سطوح بتنی و حفاظت کاتدیک میلگردها اشاره نمود. با این وجود هر یک از این تکنیکها فقط تا حدودی موفق بوده است [10]. برای حذف کامل مساله، توجه محققین به جانشین کردن قطعات فولادی و میلگردهای فولای با مصالح جدید مقاوم در مقابل خوردگی، معطوف گردیده است.
مواد کامپوزیتی (Fiber Reinforced Polymers/Plastics) FRP موادی بسیار مقاوم در مقابل محیطهای خورنده همچون محیطهای نمکی و قلیایی هستند. به همین دلیل امروزه کامپوزیتهای FRP، موضوع تحقیقات توسعهای وسیعی به عنوان جانشین قطعات و میلگردهای فولادی و کابلهای پیشتنیدگی شدهاند. چنین تحقیقاتی به خصوص برای سازههای در مجاورت آب و بالاخص در محیطهای دریایی و ساحلی، به شدت مورد توجه قرار گرفتهاند.
ساختار مصالح FRP
مواد FRP از دو جزء اساسی تشکیل میشوند؛ فایبر (الیاف) و رزین (ماده چسباننده). فایبرها که اصولاً الاستیک، ترد و بسیار مقاوم هستند، جزء اصلی باربر در ماده FRP محسوب میشوند. بسته به نوع فایبر، قطر آن در محدوده 5 تا 25 میکرون میباشد [11].
رزین اصولاً به عنوان یک محیط چسباننده عمل میکند، که فایبرها را در کنار یکدیگر نگاه میدارد. با این وجود، ماتریسهای با مقاومت کم به صورت چشمگیر بر خواص مکانیکی کامپوزیت نظیر مدول الاستیسیته و مقاومت نهایی آن اثر نمیگذارند. ماتریس (رزین) را میتوان از مخلوطهای ترموست و یا ترموپلاستیک انتخاب کرد. ماتریسهای ترموست با اعمال حرارت سخت شده و دیگر به حالت مایع یا روان در نمیآیند؛ در حالیکه رزینهای ترموپلاستیک را میتوان با اعمال حرارت، مایع نموده و با اعمال برودت به حالت جامد درآورد. به عنوان رزینهای ترموست میتوان از پلیاستر، وینیلاستر و اپوکسی، و به عنوان رزینهای ترموپلاستیک از پلیوینیل کلرید (PVC)، پلیاتیلن و پلی پروپیلن (PP)، نام برد [3].
فایبر ممکن است از شیشه، کربن، آرامید و یا وینیلون باشد که در اینصورت محصولات کامپوزیت مربوطه به ترتیب به نامهای GFRP، CFRP،AFRP و VFRP شناخته میشود. در ادامه شرح مختصری از بعضی از فایبرهای متداول ارائه خواهد شد.
مشخصات اساسی محصولات کامپوزیتی FRP
- مقاومت در مقابل خوردگی
- مقاومت
- مدول الاستیسیته
- وزن مخصوص
- عایق بودن
- خستگی
- خزش
- چسبندگی با بتن
- خم شدن
- انبساط حرارتی
دوام کامپوزیتهای FRP
کامپوزیتهای FRP شاخه جدیدی از مصالح محسوب میشوند که دوام آنها دلیل اصلی و اولیه برای کاربرد آنها در محدوده وسیعی از عناصر سازهای شده است. به همین جهت است که از آنها نه تنها در صنعت ساختمان، بلکه در فضاپیما، بال هواپیما، درهای اتومبیل، مخازن محتوی گاز مایع، نردبان و حتی راکت تنیس نیز استفاده میشود. بنابراین از نقطه نظر مهندسی نه تنها مسئله مقاومت و سختی، بلکه مسئله دوام آنها تحت شرایط مورد انتظار، کاملاً مهم جلوه میکند.
مکانیزمهایی که دوام کامپوزیتها را کنترل میکنند عبارتند از :
- تغییرات شیمیایی یا فیزیکی ماتریس پلیمر
- از دست رفتن چسبندگی بین فایبر و ماتریس
- کاهش در مقاومت و سختی فایبر
استفاده از مواد FRP به عنوان مسلح کننده خارجی در سازهها
به دنبال فرسوده شدن سازههای زیربنایی و نیاز به تقویت سازهها برای برآورده کردن شرایط سختگیرانه طراحی، طی دو دهه اخیر تاکید فراوانی بر روی تعمیر و مقاوم سازی سازهها در سراسر جهان، صورت گرفته است. از طرفی، بهسازی لرزهای سازهها بهخصوص در مناطق زلزله خیز، اهمیت فراوانی یافته است. در این میان تکنیکهای استفاده از مواد مرکب FRPبهعنوان مسلح کننده خارجی به دلیل خصوصیات منحصر به فرد آن، از جمله مقاومت بالا، سبکی، مقاومت شیمیایی و سهولت اجرا، در مقاوم سازی و احیاء سازهها اهمیت ویژهای پیدا کردهاند. از طرف دیگر، این تکنیکها به دلیل اجرای سریع و هزینههای کم جذابیت ویژهای یافتهاند.
مقاوم سازی سازههای بتن آرمه با مواد FRP
مواد مرکب FRP، دامنه وسیعی از کاربردها را برای مقاوم سازی سازههای بتنآرمه در مواردی که تکنیکهای مرسوم مقاوم سازی ممکن است مسئله ساز باشند، به خود اختصاص دادهاند. برای نمونه، یکی از معمولترین تکنیکها برای بهسازی اجزاء بتن آرمه، استفاده از ورقهای فولادی است که از بیرون به این اجزاء چسبانده میشود. این روش، روشی ساده، مقرون به صرفه و کارا است؛ اما از جهات زیر مسئله ساز است:
- زوال چسبندگی بین فولاد و بتن که از خوردگی فولاد ناشی میشود.
- مشکلات ساخت صفحات فولادی سنگین در کارگاه ساختمان.
- نیاز به نصب داربست.
- محدودیت طول در انتقال صفحات فولادی به کارگاه ساخت (در مورد مقاوم سازی خمشی اجزاء بلند).
خلاصه و نتیجه گیری
خوردگی اعضای سازهای بتنی که به صورت متداول با میلگردهای فولادی مسلح شده باشند، در محیطهای خشن و خورنده یک معضل جدی محسوب میشود. این مساله برای اعضاء بتنی سازهای در مجاورت آب و به خصوص در محیطهای دریایی و ساحلی که در معرض عوامل نمکی و قلیایی، آب در تماس با خاک، هوا و آبهای زیرزمینی قرار دارند، بسیار جدیتر خواهد بود. این مسئله هر ساله میلیونها دلار خسارت ر سراسر دنیا به بار میآورد. اگر چه تا کنون روشهای مختلفی نظیر حفاظت کاتدیک و یا پوشش قطعات فولادی و میلگردها با اپوکسی جهت فائق آمدن بر این مشکل به کار گرفته شده است، به نظر میرسد که جانشینی کامل قطعات فولادی و میلگردهای فولادی با یک ماده مقاوم در مقابل خوردگی، یک راه حل بسیار اساسی و بدیع، در حذف کامل خوردگی اجزاء فولادی به شمار آید.
محصولات کامپوزیتی FRP با مقاومت بسیار عالی، در مقابل خوردگی در محیطهای خشن و خورنده، توجه بسیاری از محققین و مهندسین در سراسر دنیا را به عنوان یک جانشین مناسب قطعات فولادی و میلگردهای فولادی در سازههای مجاور آب به خود جلب نموده است. اگر چه مزیت اصلی محصولات FRP مقاومت آنها در مقابل خوردگی است، خواص دیگری از آنها، نظیر مقاومت کششی بالا، مدول الاستیسیته قابل قبول، وزن کم، مقاومت خوب در مقابل خستگی و خزش، خاصیت عایق بودن و چسبندگی خوب با بتن و نیز دوام بسیار خوب از اهمیت بالایی برخوردار بوده و بر جاذبه آنها افزوده است. با این وجود بعضی از اشکالات و معایب این ماده نظیر مشکلات مربوط به خم کردن میلههای FRP در محل آرماتوربندی، تفاوت خواص حرارتی آنها با بتن و نیز رفتار الاستیک خطی آنها تا لحظه شکست را نباید از نظر دور داشت. در مجموع، توجه بیشتر به کاربرد محصولات کامپوزیتی FRP در سازههای بتنی که در محیطهای خشن و خورنده ساخته میشوند، نظیر سازههای آبی، ساحلی و دریایی، مشخصاً از آسیبهای زودرس و ناخواسته و شکست سازههای بتنی مسلح در اثر خوردگی میلگردها جلوگیری خواهد نمود.
فهرست مطالب و منابع
- خلاصه
- 1 – مقدمه
- 2 – راه حل مساله
- 3 – ساختار مصالح FRP
- 4- انواع محصولات FRP
- 5– میلههای کامپوزیتی FRP
- 6 – مشخصات اساسی محصولات کامپوزیتی FRP
- 7- دوام کامپوزیتهای FRP
- 8- استفاده از مواد FRP به عنوان مسلح کننده خارجی در سازهها
- 9 – خلاصه و نتیجه گیری
- 10- مراجع
منابع
- Hamada, H., Fukute, T., and Yamamoto, K., “Bending Behavior of Unbonded Prestressed Concrete Beams Prestressed with CFRP Rods,” Fiber Reinforced Cement and Concrete, Proceedings of the Fourth RILEM International Symposium, Sheffield, 1992, pp. 1015-1026.
- Saadatmanesh, H., and Ehsani, M. R., “RC Beams Strengthened with GFRP Plates, I: Experimental Study,” Journal of Structural Engineering, ASCE, Vol. 117, No. 11, 1991, pp. 3417-3433.
- Bedard, Claude, “Composite Reinforcing Bars: Assessing Their Use in Concrete,” Concrete International, 1992, pp. 55-59.
- Sharp, B. N., “Reinforced and Prestressed Concrete in Maritime Structures,” Proceedings of the Institution of Civil Engineers, Structures and Building, Vol. 116, No. 3, 1996, pp. 449-469.
- Hamid, Ahmad A., “Improving Structural Concrete Durability in the Arabian Gulf,” Concrete International, July, 1995, pp. 32-35.
- Ali, Mohammed Gholam, Danish, Sami Abdulla, and Al-Hussaini, Adel, “Strength and Durability of Concrete Structures in Bahrain,” Concrete International, July, 1996, pp. 39-45.
- Matta, Z., “Chlorides and Corrosion in the Arabian Gulf Environment,” Concrete International, May, 1992, pp. 47-48.
- Matta, Z., “Deterioration of Concrete Structures in the Arabian Gulf,” Concrete International, Juky, 1993, pp. 33-36.
- Matta, Z., “More Deterioration of Reinforced concrete in the Arabian Gulf,” Concrete International, November, 1993, pp. 50-51.
- Razaqpur, A. G., and Kashef, A. H., “State-of-the-Art on Fiber Reinforced Plastics for Buildings,” Submitted to: Institute for Research in Construction – National Research Council of Canada, Carleton University, Ottawa, 1993.
- Rostasy, F. S., “FRP Tensile Elements for Prestressed Concrete – State of the Art, Potentials and Limits,” Fiber-Reinforced-Plastic Reinforcement for Concrete Structures, International Symposium, ACI-SP-138, 1993, pp. 347-366.
- Minosaku, Koichi, “Using FRP Materials in Prestressed Concrete Structures,” Concrete International, 1992, pp.41-45.
- Erki, M. A., and Rizkalla, S. H., “Anchorages for FRP Reinforcement,” Concrete International, 1993, pp. 54-59.
- Martin, Roderick H., “Fiber Reinforced Plastic Standards for the Offshore Industry,” SAMPE Journal, Society for the Advancement of Material and Process Engineering, 1996, pp. 37-41.
- Yamasaki, Y., Masuda, Y., Tanano, H., and Shimizu, A., “Fundamental Properties of Continuous Fiber Bars,” Fiber-Reinforced-Plastic Reinforcement for Concrete Structures, International Symposium, ACI-SP-138, 1993, pp. 715-730.
- Tarricone, Paul, “Plastic Potential,” Civil Engineering, 1993, pp. 62-64.
- Ehsani, M. R., Saadatmanesh, H., and Tao, S., “Bond of GFRP Rebars to Ordinary- Strength Concrete,” Fiber-Reinforced-Plastic Reinforcement for Concrete Structures, International Symposium, ACI-SP-138, 1993, pp. 333-346.
- Char, M. S., Saadatmanesh, H., and Ehsani, M. R., “Concrete Girders Externally prestressed with Composite Plates,” PCI Journal, 1994, pp. 40-51.
- Mashida, M., and Iwamoto, K., “Bond Characteristics of FRP Rod and Concrete After Freezing and Thawing Deterioration,” Fiber-Reinforced-Plastic Reinforcement for Concrete Structures, International Symposium, ACI-SP-138, 1993, pp. 51-70.
- Hahn, H. T., and Kim, R. Y., “Swelling of Composite Laminates,” Advanced Composite Materials-Environmental Effects, ASTM-STP 658, 1978, pp. 98-130.
- Mallick, P. K., Fiber Reinforced Composites, Marcel Dekker, Inc., New York, 1988.
- Burnsell, A. R., “Long-Term Degradation of Polymeric Matrix Composites,” Concise Encyclopedia of Composite Materials, Pergamon Press, 1989, pp. 165-173.
- De Wimille, B., and Burnsall, A. R., “Accelerated Aging of a Glass Fiber Reinforced Epoxy Resin in Water,” Composites, 1983, pp. 14-35.
- Dutta, P. K., “Tensile Strength of Unidirectional Fiber Composites at Low Temperatures,” Proceedings, Sixth Japan-U.S. Conference on Composite Materials, June, 1983, Orlando, pp. 782-792.
- Lord, H. W., and Dutta, P. K., “On the Design of Polymeric Composite Structures for Cold Region Applications,” Journal of Reinforced Plastics and Composites, Vol. 7, 1988, pp. 435-450.
- Larsson, F., “The Effect of Ultraviolet Light on Mechanical Properties of Kevlar 49 Composites,” Environmental Effects on Composite Materials, Technomic Publishing Co., 1988, pp. 132-135.
- مقاله درمورد کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
- پلیمرهای تقویت شده با فیبر (FRP)
- تحقیق درباره کامپوزیت های FRP
- پروژه دانشجویی کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
- پایان نامه در مورد کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
- تحقیق درباره کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
- مقاله دانشجویی کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
- کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها در قالب پاياننامه
- پروپوزال در مورد کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
- گزارش سمینار در مورد کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها
- گزارش کارورزی درباره کامپوزیت های FRP در سازه های بتن آرمه و بررسی دوام آن ها