Outline
- Abstract
- Aims/hypothesis
- Methods
- Results
- Conclusions/interpretation
- Keywords
- Abbreviations
- Introduction
- Methods
- Participants
- Explanatory Variables
- Statistical Methods
- Results
- Discussion
- Notes
- Acknowledgements
- Funding
- Duality of Interest Statement
- Contribution Statement
- References
رئوس مطالب
- چکیده
- اهداف / فرضیه
- مواد و روش ها
- نتایج
- نتیجه گیری / تفسیر
- کلید واژه ها
- مقدمه
- روش ها
- شركت كنندگان
- متغیرهای توصیفی
- روش های آماری
- نتایج
- بحث
- حمایت مالی
Abstract
Aims/hypothesis
While the use of insulin pumps in paediatrics has expanded dramatically, there is still considerable variability among countries in the use of pump technology. The present study sought to describe differences in metabolic control and pump use in young people with type 1 diabetes using data collected in three multicentre registries.
Methods
Data for the years 2011 and 2012 from 54,410 children and adolescents were collected from the Prospective Diabetes Follow-up Registry (DPV; n = 26,198), T1D Exchange (T1DX; n = 13,755) and the National Paediatric Diabetes Audit (NPDA; n = 14,457). The modality of insulin delivery, based on age, sex and ethnic minority status, and the impact of pump use on HbA1c levels were compared.
Results
The overall mean HbA1c level was higher in the NPDA (8.9 ± 1.6% [74 ± 17.5 mmol/mol]) than in the DPV (8.0 ± 1.6% [64 ± 17.0 mmol/mol], p < 0.001) and T1DX (8.3 ± 1.4% [68 ± 15.4 mmol/mol], p < 0.001). Conversely, pump use was much lower in the NPDA (14%) than in the DPV (41%, p < 0.001) and T1DX (47%, p < 0.001). In a pooled analysis, pump use was associated with a lower mean HbA1c (pump: 8.0 ± 1.2% [64 ± 13.3 mmol/mol] vs injection: 8.5 ± 1.7% [69 ± 18.7 mmol/mol], p < 0.001). In all three registries, those with an ethnic minority status were less likely to be treated with a pump (p < 0.001) and boys were treated with a pump less often compared with girls (p < 0.001).
Conclusions/interpretation
Despite similar clinical characteristics and proportion of minority participants, substantial differences in metabolic control exist across the three large transatlantic registries of paediatric patients with type 1 diabetes, which appears to be due in part to the frequency of insulin pump therapy.
Keywords: Clinical outcomes - Continuous subcutaneous insulin infusion - DPV - Insulin pumps - National Paediatric Diabetes Audit - T1D Exchange clinic registry - Treatment modalities - Type 1 diabetesDiscussion
In 54,410 children and adolescents with type 1 diabetes in three registries, HbA1c levels were on average 0.5% (5.5 mmol/mol) lower in participants receiving insulin pump vs injection therapy, a finding similar to that reported in a number of small, single-centre studies. However, <50% of young people in these five countries were receiving pump therapy. Pump use was limited even though the majority of participants had HbA1c levels that exceeded the glycaemic goal of HbA1c (<7.5% [<58 mmol/mol]) recommended for children and adolescents with diabetes [8–10].
The use of pump therapy in NPDA was only ~30% of that in the DPV and T1DX registries, which could partially be related to national UK guidance from the National Institute for Health Care and Excellence (NICE) specifying that pumps should be considered for children <12 years of age provided that multiple daily injection therapy is considered impractical or inappropriate. Moreover, the use of pump therapy in patients aged >12 years is only recommended if an individual has disabling hypoglycaemia or if HbA1c has remained high (>8.5% [>69 mmol/mol]) on injection therapy [11]. These limitations do not exist in the other countries. The rates of pump use by age differed between the registries. The youngest age group had the highest frequency of pump use in both the DPV and NPDA registries. Conversely, adolescents had the highest frequency of pump use in the T1DX, which may provide greater independence and autonomy and facilitate the transition of care that begins in adolescence.
Despite the presence of many similar clinical characteristics for participants in the three registries, the overall HbA1c level was highest in the NPDA. This difference was not entirely explained by differences in pump use in the NPDA cohort because HbA1c was higher in injection-treated and pump-treated patients in the NPDA compared with the other two registries. The difference in HbA1c levels between injection-treated and pump-treated participants was greatest in the NPDA and smallest in the DPV.
The use of insulin pump therapy was lower in ethnic minorities in all three registries. As ethnic minority background and low socioeconomic status (SES) are often interrelated, it is possible that this relationship resulted from low SES rather than racial/ethnic factors.
Future investigations should focus on the reasons for the lower use of pumps in children and adolescents of ethnic minorities and advocacy efforts should be directed at assuring that all young people with type 1 diabetes have equal access to this insulin delivery modality, when appropriate. As pre-screening of individuals deemed suitable for pump therapy is often conducted by the clinical care team, those who are provided with the option of this insulin delivery modality frequently have more consistent follow-up and display better adherence to the prescribed medical regimen. Methods to motivate and encourage patients who are struggling or disengaged with their care need to be explored.
A limitation of the present study is that the period of pump use was not reported. It is possible that someone new to pump therapy may not have fully realised the benefits of pump therapy, which would have mitigated our ability to detect differences in metabolic control. Additionally, the present analysis included those within the first year after diagnosis; thus, it is possible that endogenous residual insulin production could have led to lower HbA1c levels in those with the shortest disease duration. Interestingly, regardless of disease duration (<2 years or >2 years), the use of insulin pumps was associated with lower HbA1c levels across all three registries (ESM Table 1). In contrast to the other two population-based registries, all T1DX participants received their care at specialised, tertiary care centres. In addition, the mode of insulin delivery was submitted for only ~60% of patients in the NPDA.
It is important to note that the cross-sectional data reported in this paper primarily reflect the evolution of insulin pump therapy in paediatric care over the past 15 years rather than the current revolution in diabetes technology that is just beginning to be translated into better care for children with type 1 diabetes. As science and technology move closer to a mechanical solution to the problems of managing children and adolescents with type 1 diabetes, it will be even more important to ensure that our paediatric patients have access to such treatment advancements.