Outline
- Highlights
- Abstract
- Keywords
- Nomenclature
- 1. Introduction
- 2. Previous Works in Pavement Crack Classification
- 3. Basic Concepts in Tensor Analysis
- 3.1. Matricization and Vectorization of Tensors
- 3.2. Basic Operations in Tensors
- 3.2.1. Addition of Tensors
- 3.2.2. Multiplication of Tensors
- 3.2.3. N-Mode Multiplication
- 3.2.4. Inner Product
- 3.3. Tensor Decomposition
- 3.3.1. Higher Order Singular Value Decomposition (hosvd)
- 4. Crack Classification Using Tensors
- 5. Data and Results
- 6. Conclusion
- Acknowledgments
- References
رئوس مطالب
- چکیده
- کلید واژه ها
- 1. مقدمه
- 2. تحقیقات قبلی مربوط به طبقه بندی ترک روسازی
- 3. مفاهیم پایه در تحلیل تانسور
- 3.1. ماتریسی و برداری کردن تانسورها
- 3.2. عملیات اصلی در تانسورها
- 3.2.1. جمع تانسورها
- 3.2.2. ضرب تانسورها
- 3.2.3. ضرب مود N
- 3.2.4. ضرب داخلی
- 3.3. تجزیه تانسور
- 3.3.1. تجزیه مقدار منفرد مرتبه بالا (HOSVD)
- 4. طبقه بندی ترک با استفاده از تانسورها
- 5. دادهها و نتایج
- 6. نتیجه گیری
Abstract
This paper presents tensor factorization as a means of classifying cracks in pavements. Several crack classification algorithms exist and they are mostly based on other machine learning methods. These may come with their own problems which may be classification errors and long processing times. Tensors are multidimensional arrays. The nature of tensors enables the analysis of the images to be carried out in a 3D space which ensures a more robust and accurate analysis tool. The levels of accuracy obtained after using the algorithm implies that crack classification based on tensor factorization is one that can be successfully employed by state agencies nationwide and around the world which use digital image processing systems as part of their pavement management programs.
Keywords: Maintenance and inspection - Management - Roads and highwaysدانلود ترجمه تخصصی این مقاله دانلود رایگان فایل pdf انگلیسی