Outline

  • Abstract
  • Keywords
  • 1. Introduction
  • 2. Materials and Methods
  • 2.1. Water Salinity
  • 2.2. Solar Resources
  • 2.3. Components of Pv-Bwro Desalination System
  • 2.4. Methods
  • 3. Design and Sizing of Pv-Bwro Desalination System
  • 3.1. Determining the Optimum Load of the Bwro Unit Powered by 2 Kwp Pv System
  • 3.2. Optimum Membrane Type, Number of Elements and Design Configuration of Bwro Unit
  • 4. Test Unit and Measurement Systems
  • 5. Performance of Bwro Desalination Test Unit
  • 5.1. Experimental Validation
  • 5.2. Results of Two Weeks of Continuous Operation of the Ro Unit
  • 5.3. Salinity of Reject and Product Water Under Single & Two Stage Operational Modes
  • 6. Performance of Pv Power System
  • 6.1. Status of Solar Radiation and Ambient Temperature Within the Six Months of Operation
  • 6.2. Status of Temperature at Different Components of Pv System
  • 6.3. Factors Affecting Optimal Pvoutput Power
  • 6.4. Performance Ratio of Pv Power System
  • 6.5. Results of Two Weeks of Continuous Operation of the Pv-Bwro Desalination System
  • 7. Effect of Battery Room Temperature Conditions on Battery Bank Autonomy
  • 7.1. Comparison of Autonomy Performance Between Daytime and Nighttime in March 2014
  • 7.1.1. Daytime Operation Mode
  • 7.1.2. Night Time Operation Mode
  • 7.2. Comparison of Autonomy Performance Between Daytime and Nighttime in March 2015
  • 7.2.1. Daytime Operation Mode
  • 7.2.2. Night Time Operation Mode
  • 7.3. Comparison of Autonomy Performance Between March 2014 and March 2015
  • 7.3.1. Daytime Room Temperature
  • 7.3.2. Nighttime Room Temperature
  • 8. Cost Details of Pv-Bwro Test Unit for Research Purpose
  • 9. Conclusion
  • Acknowledgments
  • References

رئوس مطالب

  • چکیده
  • 1.مقدمه
  • 2.ماده ها و روش ها
  • 2.1 شوری آب
  • 2.2 منابع خورشیدی
  • 2.3 مولفه های سیستم نمک زدایی PV-BWRO
  • 2.4 روش ها
  • ابزارهای آزمون های آماری
  • طراحی و اندازه گیری سیستم نمک زدایی PV-BWRO
  • 3.1 تعیین بار بهینه ی واحد BWRO راه اندازی شده توسط سیستم 2kWp PV
  • 3.2 نوع غشای بهینه، تعداد المان ها و پیکربندی طراحی واحد BWRO
  • 4. سیستم های واحد آزمایش و اندازه گیری
  • 5. عملکرد واحد آزمایش نمک زدایی BWRO
  • 5.1 اعتبارسنجی تجربی
  • 5.2 نتایج دو هفته فعالیت پیوسته ی واحد RO
  • 5.3 شوری حذف و تولید آب تحت مودهای فعالیت یک و دو مرحله ای
  • 6. عملکرد سیستم توان PV
  • 6.2 وضعیت دما در مولفه های مختلف سیستم PV
  • 6.3 فاکتورهایی که توان خروجی PV را تحت تاثیر قرار می دهد
  • 6.4 نسبت عملکرد سیستم توان PV
  • 6.5 نتایج دو هفته فعالیت پیوسته ی سیستم نمک زدای PV-BWRO
  • 7.1 مقایسه ی عملکرد خودمختاری در هنگام روز و شب در مارس 2014
  • 7.1.1 مود فعالیت در هنگام روز
  • 7.1.2 مود فعالیت در هنگام شب
  • 7.2 مقایسه ی عملکرد خودمختاری بین روز و شب در مارس 2015
  • 7.2.2 مود فعالیت هنگام شب
  • 7.3 مقایسه ی عملکرد خودمختار بین مارس 2014 و مارس 2015
  • 7.3.1 دمای اتاق روز
  • 7.3.2 دمای اتاق شب
  • 8. جزئیات هزینه واحد آزمون PV-BWRO برای پژوهش ارائه شده
  • 9. نتیجه گیری

Abstract

Small-scale brackish water reverse osmosis (BWRO) desalination units are not a major commercial success compared to its large-scale counterpart. Integrating renewable power systems with small-scale units would theoretically aid in their deployment and subsequent commercial success. In fact, RO units are constructed using a modular approach; this would allow them to adapt to a renewable power supply. Small-scale PV-RO would be a promising form of desalination system in remote areas, where BW is more common. The aim of this study is to quantify the effect of climatic-design-operation conditions on the performance and durability of a PV-BWRO desalination system. A small-scale unit is designed, constructed, and tested for 6 months. The design was limited to a 2 kWp PV power system, five different membranes, a feed TDS of 2000 mg/l, and a permeate TDS of less than 50 mg/l. Data pertaining to solar radiation and temperature were subsequently analyzed to determine their respective influences on current and future operations of the unit. The results showed that the optimum RO load, membrane type, and design configuration were 600 W, (4″x40″ TW30-4040), and a two-stage configuration, respectively. The PV system was able to supply the load without any significant disturbances; while the RO unit showed stable levels of permeate flow and salinity. Operating the PV-BWRO system for 10 h during the day would produce 5.1 m3 of fresh water at a specific energy of 1.1 kWh/m3. It was confirmed that there are many hours of high temperatures during the operation of the PV module (exceeding 45 °C) and battery room conditions (exceeding 35 °C), both of which could negatively affect the power output and battery autonomy. This negative effect is compounded annually; therefore, optimizing thermal regulation of PV modules and battery bank room conditions is essential in maintaining excellent operating temperatures.

Keywords: - - - -

دانلود ترجمه تخصصی این مقاله دانلود رایگان فایل pdf انگلیسی