Outline

  • Abstract
  • Keywords
  • 1. Introduction
  • 2. Proposed Method
  • 2.1. Mean Shift
  • 2.2. Selection of Unlabeled Samples
  • 2.3. Spectral–spatial Feature Ensemble
  • 2.4. Proposed Semi-Supervised Approach
  • 3. Experiments
  • 3.1. Data Used in the Experiments
  • 3.2. Results for Rosis Data
  • 3.3. Results for Aviris Indian Pines Data
  • 3.4. Parameter Analysis
  • 4. Conclusion
  • Acknowledgments
  • References

رئوس مطالب

  • چکیده
  • 1. مقدمه
  • 2. روش پیشنهادی
  • 2.1 میانگین تغییر
  • 2.2 انتخاب نمونه های بدون برچسب
  • 2.3 دسته مشخصه طیفی- فضایی
  • 2.4 رویکرد نیمه نظارتی پیشنهادی
  • 3. آزمایشات
  • 3.1 داده های مورد استفاده در آزمایشات
  • 3.2 نتایج برای داده های ROSIS
  • 3.3 نتایج برای داده های AVIRIS ایندین پاین
  • 3.4 تحلیل پارامتر
  • 4. نتیجه گیری

Abstract

In this paper, an efficient semi-supervised support vector machine (SVM) with segmentation-based ensemble (S2SVMSE) algorithm is proposed for hyperspectral image classification. The algorithm utilizes spatial information extracted by a segmentation algorithm for unlabeled sample selection. The unlabeled samples that are the most similar to the labeled ones are found and the candidate set of unlabeled samples to be chosen is enlarged to the corresponding image segments. To ensure the finally selected unlabeled samples be spatially widely distributed and less correlated, random selection is conducted with the flexibility of the number of unlabeled samples actually participating in semi-supervised learning. Classification is also refined through a spectral–spatial feature ensemble technique. The proposed method with very limited labeled training samples is evaluated via experiments with two real hyperspectral images, where it outperforms the fully supervised SVM and the semi-supervised version without spectral–spatial ensemble.

Keywords: - - - - -

دانلود ترجمه تخصصی این مقاله دانلود رایگان فایل pdf انگلیسی